Heat Transfer Correlations
From Thermal-FluidsPedia
(Difference between revisions)
Line 72: | Line 72: | ||
||In microscale <br> channel (<br> <math>{D_h} < 1.5{\rm{mm}}</math>) <br> [[Image:Transport_(34).jpg|120 px]] || <math>{\rm{Nu}} = {\rm{W}}{{\rm{e}}^{ - {\rm{Ja}}}}{\mathop{\rm Re}} {\Pr ^Y}</math> || <math>\begin{array}{l} Y = 1.3{\rm{ }} \\ {\rm{for }}{\mathop{\rm Re}} \le 65 \\ Y = (0.5{D_h} - 1) \\ {\rm{ }}/(2{D_h}) \\ {\rm{for }}{\mathop{\rm Re}} > 65 \\ \end{array}</math> || <math>{\rm{We}} = \frac{{{\rho _\ell }{V^2}L}}{\sigma }</math> <br> <math>{\rm{Ja}} = \frac{{{c_{p\ell }}({T_{sat}} - {T_w})}}{{{h_{\ell v}}}}</math> <br> <math>{\mathop{\rm Re}} = \frac{{\dot m''{D_h}}}{{{\mu _\ell }}}</math> <br> <math> \dot m'' </math> –mass flux (kg/s-m<sup>2</sup>) | ||In microscale <br> channel (<br> <math>{D_h} < 1.5{\rm{mm}}</math>) <br> [[Image:Transport_(34).jpg|120 px]] || <math>{\rm{Nu}} = {\rm{W}}{{\rm{e}}^{ - {\rm{Ja}}}}{\mathop{\rm Re}} {\Pr ^Y}</math> || <math>\begin{array}{l} Y = 1.3{\rm{ }} \\ {\rm{for }}{\mathop{\rm Re}} \le 65 \\ Y = (0.5{D_h} - 1) \\ {\rm{ }}/(2{D_h}) \\ {\rm{for }}{\mathop{\rm Re}} > 65 \\ \end{array}</math> || <math>{\rm{We}} = \frac{{{\rho _\ell }{V^2}L}}{\sigma }</math> <br> <math>{\rm{Ja}} = \frac{{{c_{p\ell }}({T_{sat}} - {T_w})}}{{{h_{\ell v}}}}</math> <br> <math>{\mathop{\rm Re}} = \frac{{\dot m''{D_h}}}{{{\mu _\ell }}}</math> <br> <math> \dot m'' </math> –mass flux (kg/s-m<sup>2</sup>) | ||
|- | |- | ||
- | | Boiling | + | | rowspan="5" | Boiling ||Nucleate, <br> saturated pool <br> boiling <br> [[Image:Transport_(35).jpg|120 px]] || <math>\overline {{\rm{Nu}}} = \frac{{{\rm{Ja}}_\ell ^2}}{{{C^3}\Pr _\ell ^m}}</math> || m=2 for water <br> m=4.1 for other <br> fluids <br> C=0.013 water- <br> copper or stainless <br> steel <br> C=0.006 for water- <br> nickel or brass || <math>\begin{array}{l} \overline {Nu} = \frac{{\bar h{L_c}}}{{{k_\ell }}} \\ {L_c} = \sqrt {\frac{{{\sigma _\ell }}}{{g({\rho _\ell } - {\rho _v})}}} \\ {\rm{J}}{{\rm{a}}_\ell } = \frac{{{c_{p,\ell }}\Delta T}}{{{h_{\ell v}}}} \\ \end{array} \Delta T = {T_w} - {T_{sat}}</math> |
|- | |- | ||
- | | | | + | ||Film boiling on a<br> horizontal plate <br> [[Image:Transport_(36).jpg|100 px]] || <math>\begin{array}{l} \overline {{\rm{Nu}}} = 0.425 \\ \times {\left[ {Gr{{\Pr }_v}\left( {\frac{{1 + 0.4J{a_v}}}{{J{a_v}}}} \right)} \right]^{\frac{1}{4}}} \\ \end{array}</math> || Term in parentheses <br> accounts for <br> sensible heating<br> effect in vapor film || <math>\begin{array}{l} \overline {Nu} = \frac{{\bar h{L_c}}}{{{k_v}}} \\ {L_c} = \sqrt {\frac{{{\sigma _\ell }}}{{g({\rho _\ell } - {\rho _v})}}} \\ Gr = \frac{{g[({\rho _\ell } - {\rho _v})/{\rho _v}]L_c^3}}{{\nu _v^2}} \\ {\rm{J}}{{\rm{a}}_v} = \frac{{{c_{p,v}}\Delta T}}{{{h_{\ell v}}}} \\ \end{array}</math> |
|- | |- | ||
- | + | ||Film boiling on a <br> horizontal cylinder <br> [[Image:Transport_(37).jpg|100 px]] || <math>\begin{array}{l} \overline {{\rm{Nu}}} = 0.62 \\ \times {\left[ {{\rm{Gr}}{{\Pr }_v}\left( {\frac{{1 + 0.4J{a_v}}}{{J{a_v}}}} \right)} \right]^{\frac{1}{4}}} \\ \end{array}</math> || <math>D \gg </math> film<br> thickness | |
+ | | rowspan="2" | <math>\begin{array}{l} \overline {Nu} = \frac{{\bar hD}}{{{k_v}}} \\ {\rm{Gr}} = \\ \frac{{g[({\rho _\ell } - {\rho _v})/{\rho _v}]{D^3}}}{{\nu_v^2}} \\ {\rm{J}}{{\rm{a}}_v} = \frac{{{c_{p,v}}\Delta T}}{{{h_{\ell v}}}} \\ \end{array}</math> | ||
|- | |- | ||
- | + | ||Film boiling on a <br> sphere <br> [[Image:Transport_(38).jpg|50 px]] || <math>\begin{array}{l} \overline {{\rm{Nu}}} = 0.4 \\ \times {\left[ {{\rm{Gr}}{{\Pr }_v}\left( {\frac{{1 + 0.4{\rm{J}}{{\rm{a}}_v}}}{{{\rm{J}}{{\rm{a}}_v}}}} \right)} \right]^{\frac{1}{3}}} \\ \end{array}</math> || <math>D\gg</math> film <br> thickness | |
|- | |- | ||
- | + | ||Boiling in <br> microchannel <br> (D=1.39 – 1.69 mm) <br> [[Image:Transport_(39).jpg|100 px]] || <math>\begin{array}{l} {\rm{Nu}} = 30{{\mathop{\rm Re}} ^{0.857}} \\ \times {\rm{B}}{{\rm{o}}^{0.714}}{(1 - x)^{ - 0.143}} \\ \end{array}</math> || Correlation <br> obtained by using <br> Freon ® 141 <br> x is quality || <math>\overline {Nu} = \frac{{\bar hD}}{{{k_\ell }}} {\rm{Bo}} = \frac{{q''}}{{{h_{\ell v}}\dot m''}}</math> <br> <math> \dot m'' </math> – mass flux (kg/s-m2) | |
- | + | ||
- | + | ||
|- | |- | ||
| Melting||Melting in a rectangular cavity <br> [[Image:Transport_(40).jpg|80 px]] || <math>\begin{array}{l} | | Melting||Melting in a rectangular cavity <br> [[Image:Transport_(40).jpg|80 px]] || <math>\begin{array}{l} |
Revision as of 14:49, 18 July 2010
Table 2 summarizes the existing correlations in literature for various heat transfer modes for both single-phase and two-phase systems in different geometric configurations. It can be seen that the heat transfer coefficient depends on surface geometry, the driving force of the fluid motion, thermal properties of the fluid, and flow properties.
Table 2 Correlations for convective heat transfer for various modes and geometries