# Sublimation with Chemical Reaction

### From Thermal-FluidsPedia

(→References) |
Reza Toossi (Talk | contribs) |
||

(One intermediate revision not shown) | |||

Line 3: | Line 3: | ||

Figure 1 shows the physical model of the problem under consideration [[#References|(Kaviany, 2001)]]. The concentration of the fuel is highest at the solid fuel surface, and decreases as the location of the flame is approached. The gaseous fuel diffuses away from the solid fuel surface and meets the oxidant as it flows parallel to the solid fuel surface. Combustion occurs in a thin reaction zone where | Figure 1 shows the physical model of the problem under consideration [[#References|(Kaviany, 2001)]]. The concentration of the fuel is highest at the solid fuel surface, and decreases as the location of the flame is approached. The gaseous fuel diffuses away from the solid fuel surface and meets the oxidant as it flows parallel to the solid fuel surface. Combustion occurs in a thin reaction zone where | ||

- | [[Image: | + | [[Image:xchapter7_(11).jpg |thumb|400 px|alt= Sublimation with chemical reaction. | Figure 1: Sublimation with chemical reaction. ]] |

Line 20: | Line 20: | ||

<center><math>\frac{\partial (\rho u)}{\partial x}+\frac{\partial (\rho v)}{\partial y}=0 \qquad \qquad(1) </math></center> | <center><math>\frac{\partial (\rho u)}{\partial x}+\frac{\partial (\rho v)}{\partial y}=0 \qquad \qquad(1) </math></center> | ||

- | + | ||

<center><math>u\frac{\partial u}{\partial x}+v\frac{\partial u}{\partial y}=\frac{\partial }{\partial y}\left( \nu \frac{\partial u}{\partial y} \right) \qquad \qquad(2) </math></center> | <center><math>u\frac{\partial u}{\partial x}+v\frac{\partial u}{\partial y}=\frac{\partial }{\partial y}\left( \nu \frac{\partial u}{\partial y} \right) \qquad \qquad(2) </math></center> | ||

- | + | ||

<center><math>\frac{\partial }{\partial x}(\rho {{c}_{p}}uT)+\frac{\partial }{\partial y}(\rho {{c}_{p}}vT)=\frac{\partial }{\partial y}\left( k\frac{\partial T}{\partial y} \right)+{{{\dot{m}}'''}_{o}}{{h}_{c,o}} \qquad \qquad(3) </math></center> | <center><math>\frac{\partial }{\partial x}(\rho {{c}_{p}}uT)+\frac{\partial }{\partial y}(\rho {{c}_{p}}vT)=\frac{\partial }{\partial y}\left( k\frac{\partial T}{\partial y} \right)+{{{\dot{m}}'''}_{o}}{{h}_{c,o}} \qquad \qquad(3) </math></center> | ||

- | + | ||

- | + | ||

<center><math>\frac{\partial }{\partial x}(\rho u{{\omega }_{o}})+\frac{\partial }{\partial y}(\rho v{{\omega }_{o}})=\frac{\partial }{\partial y}\left( \rho D\frac{\partial {{\omega }_{o}}}{\partial y} \right)-{{{\dot{m}}'''}_{o}} \qquad \qquad(4) </math></center> | <center><math>\frac{\partial }{\partial x}(\rho u{{\omega }_{o}})+\frac{\partial }{\partial y}(\rho v{{\omega }_{o}})=\frac{\partial }{\partial y}\left( \rho D\frac{\partial {{\omega }_{o}}}{\partial y} \right)-{{{\dot{m}}'''}_{o}} \qquad \qquad(4) </math></center> | ||

- | + | ||

Line 47: | Line 46: | ||

<center><math>y\to \infty \qquad \qquad(5) </math></center> | <center><math>y\to \infty \qquad \qquad(5) </math></center> | ||

- | + | ||

Line 60: | Line 59: | ||

<center><math>y=0 \qquad \qquad (6) </math></center> | <center><math>y=0 \qquad \qquad (6) </math></center> | ||

- | + | ||

where <math>{{{\dot{m}}''}_{f}}</math> is the rate of solid fuel sublimation per unit area (kg/m<sup>2</sup>-s) and <math>\rho </math> is the density of the mixture. | where <math>{{{\dot{m}}''}_{f}}</math> is the rate of solid fuel sublimation per unit area (kg/m<sup>2</sup>-s) and <math>\rho </math> is the density of the mixture. | ||

Line 69: | Line 68: | ||

, & y=0 \\ | , & y=0 \\ | ||

\end{matrix} \qquad \qquad(7) </math></center> | \end{matrix} \qquad \qquad(7) </math></center> | ||

- | + | ||

Line 78: | Line 77: | ||

, & y=0 \\ | , & y=0 \\ | ||

\end{matrix} \qquad \qquad(8) </math></center> | \end{matrix} \qquad \qquad(8) </math></center> | ||

- | + | ||

Line 88: | Line 87: | ||

& =\frac{\partial }{\partial y}\left[ k\frac{\partial T}{\partial y}+\rho D{{h}_{c,o}}\frac{\partial {{\omega }_{o}}}{\partial y} \right] \\ | & =\frac{\partial }{\partial y}\left[ k\frac{\partial T}{\partial y}+\rho D{{h}_{c,o}}\frac{\partial {{\omega }_{o}}}{\partial y} \right] \\ | ||

\end{align} \qquad \qquad(9) </math></center> | \end{align} \qquad \qquad(9) </math></center> | ||

- | + | ||

Line 98: | Line 97: | ||

& =\frac{\partial }{\partial y}\left[ \rho \alpha \frac{\partial }{\partial y}({{c}_{p}}T+{{\omega }_{o}}{{h}_{c,o}}) \right] \\ | & =\frac{\partial }{\partial y}\left[ \rho \alpha \frac{\partial }{\partial y}({{c}_{p}}T+{{\omega }_{o}}{{h}_{c,o}}) \right] \\ | ||

\end{align} \qquad \qquad(10) </math></center> | \end{align} \qquad \qquad(10) </math></center> | ||

- | + | ||

- | + | ||

which can be viewed as an energy equation with quantity <math>{{c}_{p}}T+{{\omega }_{o}}{{h}_{c,o}}</math> as a dependent variable. | which can be viewed as an energy equation with quantity <math>{{c}_{p}}T+{{\omega }_{o}}{{h}_{c,o}}</math> as a dependent variable. | ||

Line 110: | Line 108: | ||

, & y=0 \\ | , & y=0 \\ | ||

\end{matrix} \qquad \qquad(11) </math></center> | \end{matrix} \qquad \qquad(11) </math></center> | ||

- | + | ||

Line 122: | Line 120: | ||

\end{matrix} \\ | \end{matrix} \\ | ||

\end{align} \qquad \qquad(12) </math></center> | \end{align} \qquad \qquad(12) </math></center> | ||

- | + | ||

Line 129: | Line 127: | ||

<center><math>-{{{q}''}_{w}}={{{\dot{m}}''}_{f}}{{h}_{sv}}+{{{q}''}_{\ell }} \qquad \qquad(13) </math></center> | <center><math>-{{{q}''}_{w}}={{{\dot{m}}''}_{f}}{{h}_{sv}}+{{{q}''}_{\ell }} \qquad \qquad(13) </math></center> | ||

- | + | ||

Line 140: | Line 138: | ||

<center><math>{{{\dot{m}}''}_{f}}=Z\frac{{{\tau }_{w}}}{{{u}_{\infty }}} \qquad \qquad(14) </math></center> | <center><math>{{{\dot{m}}''}_{f}}=Z\frac{{{\tau }_{w}}}{{{u}_{\infty }}} \qquad \qquad(14) </math></center> | ||

- | + | ||

Line 147: | Line 145: | ||

<center><math>Z=\frac{{{c}_{p}}({{T}_{\infty }}-{{T}_{w}})+{{h}_{c,o}}({{\omega }_{o,\infty }}-{{\omega }_{o,w}})}{{{h}_{sg}}+{{{{q}''}}_{\ell }}/{{{{m}''}}_{f}}} \qquad \qquad(15) </math></center> | <center><math>Z=\frac{{{c}_{p}}({{T}_{\infty }}-{{T}_{w}})+{{h}_{c,o}}({{\omega }_{o,\infty }}-{{\omega }_{o,w}})}{{{h}_{sg}}+{{{{q}''}}_{\ell }}/{{{{m}''}}_{f}}} \qquad \qquad(15) </math></center> | ||

- | + | ||

Line 154: | Line 152: | ||

<center><math>{{C}_{f}}=\frac{{{\tau }_{w}}}{\rho u_{\infty }^{2}/2} \qquad \qquad(16) </math></center> | <center><math>{{C}_{f}}=\frac{{{\tau }_{w}}}{\rho u_{\infty }^{2}/2} \qquad \qquad(16) </math></center> | ||

- | + | ||

Line 160: | Line 158: | ||

<center><math>{{{\dot{m}}''}_{f}}=\frac{{{C}_{f}}}{2}\rho {{u}_{\infty }}Z \qquad \qquad(17) </math></center> | <center><math>{{{\dot{m}}''}_{f}}=\frac{{{C}_{f}}}{2}\rho {{u}_{\infty }}Z \qquad \qquad(17) </math></center> | ||

- | + | ||

Line 167: | Line 165: | ||

<center><math>{{v}_{w}}=\frac{{{{{\dot{m}}''}}_{f}}}{\rho }=\frac{{{C}_{f}}}{2}{{u}_{\infty }}Z \qquad \qquad(18) </math></center> | <center><math>{{v}_{w}}=\frac{{{{{\dot{m}}''}}_{f}}}{\rho }=\frac{{{C}_{f}}}{2}{{u}_{\infty }}Z \qquad \qquad(18) </math></center> | ||

- | + | ||

Line 174: | Line 172: | ||

<center><math>B=\frac{{{(\rho v)}_{w}}}{{{(\rho u)}_{\infty }}}\operatorname{Re}_{x}^{1/2} \qquad \qquad(19) </math></center> | <center><math>B=\frac{{{(\rho v)}_{w}}}{{{(\rho u)}_{\infty }}}\operatorname{Re}_{x}^{1/2} \qquad \qquad(19) </math></center> | ||

- | + | ||

Line 181: | Line 179: | ||

<center><math>B=\frac{Z}{2}\operatorname{Re}_{x}^{1/2}{{C}_{f}} \qquad \qquad(20) </math></center> | <center><math>B=\frac{Z}{2}\operatorname{Re}_{x}^{1/2}{{C}_{f}} \qquad \qquad(20) </math></center> | ||

- | + | ||

Line 189: | Line 187: | ||

<center><math>B=\frac{\ln (1+Z)}{2.6{{Z}^{0.15}}} \qquad \qquad(21) </math></center> | <center><math>B=\frac{\ln (1+Z)}{2.6{{Z}^{0.15}}} \qquad \qquad(21) </math></center> | ||

- | + | ||

## Current revision as of 02:59, 15 July 2010

During combustion involving a solid fuel, the solid fuel may burn directly or it may be sublimated before combustion. In the latter case – which will be discussed in this subsection – gaseous fuel diffuses away from the solid-vapor surface. Meanwhile, the gaseous oxidant diffuses toward the solid-vapor interface. Under the right conditions, the mass flux of vapor fuel and the gaseous oxidant meet and the chemical reaction occurs at a certain zone known as the flame. The flame is usually a very thin region with a color dictated by the temperature of combustion.

Figure 1 shows the physical model of the problem under consideration (Kaviany, 2001). The concentration of the fuel is highest at the solid fuel surface, and decreases as the location of the flame is approached. The gaseous fuel diffuses away from the solid fuel surface and meets the oxidant as it flows parallel to the solid fuel surface. Combustion occurs in a thin reaction zone where

the temperature is the highest, and the latent heat of sublimation is supplied by combustion. The combustion of solid fuel through sublimation can be modeled as a steady-state boundary layer type flow with sublimation and chemical reaction.
To model the problem, the following assumptions are made:

1. The fuel is supplied by sublimation at a steady rate.

2. The Lewis number is unity, so the thermal and concentration boundary layers have the same thickness.

3. The buoyancy force is negligible.

The conservations of mass, momentum, energy and species of mass in the boundary layer are

where is rate of oxidant consumption (kg/m^{3}-s). *h*_{c,o} is the heat released by combustion per unit mass consumption of the oxidant (J/kg), which is different from the combustion heat defined in Chapter 3. ω_{o} is mass fraction of the oxidant in the gaseous mixture.

The corresponding boundary conditions of eqs. (1) – (4) are

at

at

where is the rate of solid fuel sublimation per unit area (kg/m^{2}-s) and ρ is the density of the mixture.

The shear stress at the solid fuel surface is

The heat flux at the solid fuel surface is

The exact solution of the heat and mass problem described by eqs. (1) – (4) can be obtained using conventional numerical simulation, which is very complex. However, it is useful here to introduce the results obtained by Kaviany (2001) using analogy between momentum and heat transfer. Multiplying eq. (4) by *h*_{c,o} and adding the result to eq. (3), one obtains

Considering the assumption that Lewis number is unity, i.e., *L**e* = α / *D* = 1, eq. (9) can be rewritten as

which can be viewed as an energy equation with quantity *c*_{p}*T* + ω_{o}*h*_{c,o} as a dependent variable.

Since at *y* = 0, i.e., the solid fuel surface is not permeable for the oxidant, eq. (8) can be rewritten as

Analogy between surface shear stress and the surface energy flux yields

The energy balance at the surface of the solid fuel is

where the two terms on the right-hand side of eq. (13) represent the latent heat of sublimation, and the sensible heat required to raise the surface temperature of the solid fuel to sublimation temperature and heat loss to the solid fuel.

Combining eqs. (12) and (13) yields the rate of sublimation on the solid fuel surface

where *Z* is transfer driving force or transfer number defined as

By using the friction coefficient –

eq. (14) becomes

The surface blowing velocity of the gaseous fuel is then

where the friction coefficient *C*_{f} can be obtained from the solution of boundary layer flow over a flat plate with blowing on the surface (Kaviany, 2001; Kays et al., 2004). The similarity solution of the boundary layer flow problem exists only if blowing velocity satisfies . In this case, one can define a blowing parameter as

Combination of eqs. (18) and (19) yields

Glassman (1987) recommended an empirical form of eq. (20) based on numerical and experimental results:

The blowing parameter obtained from eq. (21) is

The blowing velocity at the surface is obtained from eq.(19):

which can be integrated to yield the average blowing velocity:

## References

Glassman, I., 1987, *Combustion*, 2^{nd} ed., Academic Press, Orlando, FL.

Kaviany, M, 2001, *Principles of Convective Heat Transfer*, 2^{nd} ed., Springer Verlag, New York.